\[\boxed{\mathbf{115}.}\]
\[1)\ \left\{ \begin{matrix} 2x - y = 0\ \ \ \ \ \ \ \ \ \ \ \ \ \\ 3x^{2} - y^{2} + 4 = 0 \\ \end{matrix} \right.\ \text{\ \ \ \ }\]
\[\left\{ \begin{matrix} y = 2x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 3x^{2} - (2x)^{2} + 4 = 0 \\ \end{matrix} \right.\ \]
\[3x^{2} - 4x^{2} + 4 = 0\]
\[- x^{2} = - 4\]
\[x^{2} = 4\]
\[x = \pm 2.\]
\[\left\{ \begin{matrix} x = 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ y = 2 \cdot 2 = 4 \\ \end{matrix} \right.\ \ \ \ или\ \ \ \left\{ \begin{matrix} x = - 2 \\ y = - 4 \\ \end{matrix} \right.\ \]
\[Ответ:(2;4);\ \ ( - 2; - 4).\]
\[2)\ \left\{ \begin{matrix} x - 2y = 8\ \ \ \ \ \ \ \\ x^{2} + 2y^{2} = 22 \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\]
\[\ \left\{ \begin{matrix} x = 8 + 2y\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ (8 + 2y)^{2} + 2y^{2} = 22 \\ \end{matrix} \right.\ \]
\[64 + 32y + 4y^{2} + 2y^{2} - 22 = 0\]
\[6y^{2} + 32y + 42 = 0\ \ \ |\ :2\]
\[3y^{2} + 16y + 21 = 0\]
\[D_{1} = 64 - 63 = 1\]
\[y_{1} = \frac{- 8 + 1}{3} = - \frac{7}{3};\ \ \]
\[y_{2} = \frac{- 8 - 1}{3} = - 3.\]
\[x_{1} = 8 + 2 \cdot ( - 3) = 2;\]
\[x_{2} = 8 + 2 \cdot \left( - \frac{7}{3} \right) = 8 - \frac{14}{3} =\]
\[= 8 - 4\frac{2}{3} = 3\frac{1}{3}.\]
\[Ответ:(2; - 3);\left( 3\frac{1}{3}; - 2\frac{1}{3} \right).\]
\[3)\ \left\{ \begin{matrix} x^{2} + y^{2} = 13 \\ xy + 6 = 0\ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ }\]
\[\ \left\{ \begin{matrix} xy = - 6\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ x^{2} + 2xy + y^{2} - 2xy = 13 \\ \end{matrix} \right.\ \]
\[(x + y)^{2} - 2 \cdot ( - 6) = 13\]
\[(x + y)^{2} + 12 = 13\]
\[(x + y)^{2} = 1\]
\[1)\ \left\{ \begin{matrix} xy = - 6\ \ \\ x + y = 1 \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\]
\[\left\{ \begin{matrix} x = 1 - y\ \ \ \ \ \ \ \ \ \ \\ (1 - y)y = - 6 \\ \end{matrix} \right.\ \]
\[y - y^{2} + 6 = 0\]
\[y^{2} - y - 6 = 0\]
\[y_{1} + y_{2} = 1;\ \ y_{1} \cdot y_{2} = - 6\]
\[y_{1} = 3;\ \ \ y_{2} = - 2.\]
\[x_{1} = 1 - 3 = - 2;\]
\[x_{2} = 1 + 2 = 3.\]
\[2)\ \left\{ \begin{matrix} xy = - 6\ \ \ \ \ \\ x + y = - 1 \\ \end{matrix} \right.\ \text{\ \ \ \ }\]
\[\left\{ \begin{matrix} x = - 1 - y\ \ \ \ \ \ \ \ \ \\ ( - 1 - y)y = - 6 \\ \end{matrix} \right.\ \]
\[- y - y^{2} + 6 = 0\]
\[y^{2} + y - 6 = 0\]
\[y_{1} + y_{2} = - 1;\ \ y_{1} \cdot y_{2} = - 6\]
\[y_{1} = - 3;\ \ \ \ y_{2} = 2.\]
\[x_{1} = - 1 + 3 = 2;\ \ \]
\[x_{2} = - 1 - 2 = - 3.\]
\[Ответ:( - 2;3);(3;\ - 2);\]
\[(2;\ - 3);( - 3;2).\]