\[\boxed{\mathbf{112}.}\]
\[\frac{2x^{2} + x - 1}{3x^{2} + 4x + 1} =\]
\[= \frac{(2x - 1)(x + 1)}{(3x + 1)(x + 1)} = \frac{2x - 1}{3x + 1}\]
\[1)\ 2x^{2} + x - 1 =\]
\[= 2 \cdot \left( x - \frac{1}{2} \right)(x + 1) =\]
\[= (2x - 1)(x + 1)\]
\[D = 1 + 8 = 9\]
\[x_{1} = \frac{- 1 + 3}{4} = \frac{2}{4} = \frac{1}{2};\]
\[x_{2} = \frac{- 1 - 3}{4} = - 1.\]
\[2)\ 3x^{2} + 4x + 1 =\]
\[= 3 \cdot \left( x + \frac{1}{3} \right)(x + 1) =\]
\[= (3x + 1)(x + 1)\]
\[D_{1} = 4 - 3 = 1\]
\[x_{1} = \frac{- 2 + 1}{3} = - \frac{1}{3};\ \ \]
\[\ x_{2} = \frac{- 2 - 1}{3} = - 1.\]