\[\boxed{\mathbf{111}.}\]
\[1)\ x^{2} - 12x + 35 =\]
\[= (x - 5)(x - 7)\]
\[D_{1} = 36 - 35 = 1\]
\[x_{1} = 6 + 1 = 7;\ \ \]
\[x_{2} = 6 - 1 = 5.\]
\[2)\ x^{2} + 9x + 20 =\]
\[= (x + 5)(x + 4)\]
\[x_{1} + x_{2} = - 9;\ \ x_{1} \cdot x_{2} = 20\]
\[x_{1} = - 5;\ \ x_{2} = - 4.\]
\[3)\ 5x^{2} + 9x - 2 =\]
\[= 5 \cdot \left( x - \frac{1}{5} \right)(x + 2) =\]
\[= (5x - 1)(x + 2)\]
\[D = 81 + 40 = 121\]
\[x_{1} = \frac{- 9 + 11}{10} = \frac{2}{10} = \frac{1}{5};\ \]
\[x_{2} = \frac{- 9 - 11}{10} = - \frac{20}{10} = - 2.\]
\[4)\ 4x^{2} - x - 3 =\]
\[= 4 \cdot \left( x + \frac{3}{4} \right)(x - 1) =\]
\[= (4x + 3)(x - 1)\]
\[D = 1 + 48 = 49\]
\[x_{1} = \frac{1 + 7}{8} = 1;\ \ \ \]
\[x_{2} = \frac{1 - 7}{8} = - \frac{6}{8} = - \frac{3}{4}.\]
\[5) - 2x^{2} + 5x - 2 =\]
\[= - 2 \cdot \left( x - \frac{1}{2} \right)(x - 2) =\]
\[= (2x - 1)(2 - x)\]
\[2x^{2} - 5x + 2 = 0\]
\[D = 25 - 16 = 9\]
\[x_{1} = \frac{5 + 3}{4} = 2;\ \ \]
\[\ x_{2} = \frac{5 - 3}{4} = \frac{2}{4} = \frac{1}{2}.\]
\[6)\ \frac{2}{3}x^{2} + 2x - 12 =\]
\[= \frac{2}{3} \cdot (x + 6)(x - 3)\]
\[\frac{2}{3}x^{2} + 2x - 12 = 0\ \ \ \ | \cdot \frac{3}{2}\]
\[x^{2} + 3x - 18 = 0\]
\[x_{1} + x_{2} = - 3;\ \ \ x_{1} \cdot x_{2} = - 18\]
\[x_{1} = - 6;\ \ x_{2} = 3.\]