\[\boxed{\mathbf{1116}\mathbf{.}}\]
\[1)\cos{4x}\cos{2x} = \cos{5x}\cos x\]
\[\frac{1}{2}\left( \cos{6x} + \cos{2x} \right) =\]
\[= \frac{1}{2}\left( \cos{6x} + \cos{4x} \right)\]
\[\cos{2x} = \cos{4x}\]
\[2\cos^{2}{2x} - \cos{2x} - 1 = 0\]
\[Пусть\ t = \cos{2x}:\]
\[2t^{2} - t - 1 = 0\]
\[D = 1 + 8 = 9\]
\[t = \frac{1 - 3}{4} = - \frac{1}{2};\ \ \ t = \frac{1 + 3}{4} = 1.\]
\[1)\ \cos{2x} = - \frac{1}{2}\]
\[2x = \pm \frac{2\pi}{3} + 2\pi k\]
\[x = \pm \frac{\pi}{3} + \pi k.\]
\[2)\cos{2x} = 1\]
\[2x = 2\pi k\]
\[x = \pi k.\]
\[2)\sin{5x}\sin x = \sin{7x}\sin{3x}\]
\[\frac{1}{2}\cos{4x} - \frac{1}{2}\cos{6x} = \frac{1}{2}\cos{4x} -\]
\[- \frac{1}{2}\cos{10x}\]
\[\cos{6x} - \cos{10x} = 0\]
\[\sin{8x}\sin{2x} = 0\]
\[1)\ \sin{8x} = 0\]
\[8x = \text{πk}\]
\[x = \frac{\text{πk}}{8}.\]
\[2)\sin{2x} = 0\]
\[2x = \pi k\]
\[x = \frac{\text{πk}}{2}.\]
\[3)\sin\left( x + \frac{\pi}{3} \right)\cos\left( x - \frac{\pi}{6} \right) = 1\]
\[\frac{1}{2}\left( \sin\left( 2x + \frac{\pi}{6} \right) + \sin\frac{\pi}{2} \right) = 1\]
\[\sin\left( 2x + \frac{\pi}{6} \right) = 2 - 1\]
\[\sin\left( 2x + \frac{\pi}{6} \right) = 1\]
\[2x + \frac{\pi}{6} = \frac{\pi}{2} + 2\pi k\]
\[2x = \frac{\pi}{3} + 2\pi k\]
\[x = \frac{\pi}{6} + 2\pi k.\]
\[4)\ 2\sin\left( \frac{\pi}{4} + x \right)\sin\left( \frac{\pi}{4} - x \right) +\]
\[+ \sin^{2}x = 0\]
\[\cos{2x} - \cos{\pi - 2\ } + \sin^{2}x = 0\]
\[\cos^{2}x - \sin^{2}x + \sin^{2}x = 0\]
\[\cos x = 0\]
\[x = \frac{\pi}{2} + 2\pi k.\]