Решебник по алгебре и начала математического анализа 10 класс Колягин Задание 1069

Авторы:
Тип:учебник

Задание 1069

\[\boxed{\mathbf{1069}\mathbf{.}}\]

\[1)\ 2\cos^{2}\left( \frac{\pi}{4} - \frac{a}{2} \right) = 1 + \sin a\]

\[2\cos^{2}\left( \frac{1}{2} \bullet \left( \frac{\pi}{2} - a \right) \right) = 1 + \sin a\]

\[2 \bullet \frac{1 + \cos\left( \frac{\pi}{2} - a \right)}{2} = 1 + \sin a\]

\[1 + \sin a = 1 + \sin a\]

\[Что\ и\ требовалось\ доказать.\]

\[2)\ \frac{3 - 4\cos{2a} + \cos{4a}}{3 + 4\cos{2a} + \cos{4a}} = tg^{4}\text{\ a}\]

\[\frac{2 - 4\cos{2a} + \left( 1 + \cos{4a} \right)}{2 + 4\cos{2a} + \left( 1 + \cos{4a} \right)} =\]

\[= tg^{4}\text{\ a}\]

\[\frac{2 - 4\cos{2a} + 2\cos^{2}{2a}}{2 + 4\cos{2a} + 2\cos^{2}{2a}} = tg^{4}\text{\ a}\]

\[\frac{1 - 2\cos{2a} + \cos^{2}{2a}}{1 + 2\cos{2a} + \cos^{2}{2a}} = tg^{4}\text{\ a}\]

\[\left( \frac{1 - \cos{2a}}{1 + \cos{2a}} \right)^{2} = tg^{4}\text{\ a}\]

\[tg^{4}\ a = tg^{4}\text{\ a}\]

\[Что\ и\ требовалось\ доказать.\]

\[3)\ 2\sin^{2}\left( \frac{\pi}{4} - \frac{a}{2} \right) = 1 - \sin a\]

\[2\sin^{2}\left( \frac{1}{2} \bullet \left( \frac{\pi}{2} - a \right) \right) = 1 - \sin a\]

\[2 \bullet \frac{1 - \cos\left( \frac{\pi}{2} - a \right)}{2} = 1 - \sin a\]

\[1 - \sin a = 1 - \sin a\]

\[Что\ и\ требовалось\ доказать.\]

\[4)\ \frac{1 + \sin{2a} + \cos{2a}}{1 + \sin{2a} - \cos{2a}} = ctg\ a\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам