\[\boxed{\mathbf{1054}\mathbf{.}}\]
\[1)\ \frac{\sin{2a}}{\left( \sin a + \cos a \right)^{2} - 1} =\]
\[= \frac{\sin{2a}}{\sin^{2}a + \cos^{2}a + 2\sin a \bullet \cos a - 1} =\]
\[= \frac{\sin{2a}}{1 + \sin{2a} - 1} = \frac{\sin{2a}}{\sin{2a}} = 1\]
\[2)\ \frac{1 + \cos{2a}}{1 - \cos{2a}} =\]
\[= \frac{1 + \left( \cos^{2}a - \sin^{2}a \right)}{1 - \left( \cos^{2}a - \sin^{2}a \right)} =\]
\[= \frac{1 - \sin^{2}a + \cos^{2}a}{1 - \cos^{2}a + \sin^{2}a} =\]
\[= \frac{\cos^{2}a + \cos^{2}a}{\sin^{2}a + \sin^{2}a} = \frac{2\cos^{2}a}{2\sin^{2}a} =\]
\[= \left( \frac{\cos a}{\sin a} \right)^{2} = ctg^{2}a\]