\[\boxed{\mathbf{1050}\mathbf{.}}\]
\[1)\sin a = \frac{3}{5}\text{\ \ }и\ \ \frac{\pi}{2} < a < \pi\]
\[\text{\ a\ }принадлежит\ второй\]
\[\ четверти:\]
\[\cos a = - \sqrt{1 - \sin^{2}a}\]
\[\cos a = - \sqrt{1 - \left( \frac{3}{5} \right)^{2}} =\]
\[= - \sqrt{\frac{25}{25} - \frac{9}{25}} = - \sqrt{\frac{16}{25}} = - \frac{4}{5}\]
\[\sin{2a} = 2\sin a \bullet \cos a\]
\[\sin{2a} = 2 \bullet \frac{3}{5} \bullet \left( - \frac{4}{5} \right) = - \frac{24}{25}\]
\[Ответ:\ - \frac{24}{25}.\]
\[2)\cos a = - \frac{4}{5}\text{\ \ }и\ \ \pi < a < \frac{3\pi}{2}\]
\[\text{a\ }принадлежит\ третьей\]
\[\ четверти:\]
\[\sin a = - \sqrt{1 - \cos^{2}a}\]
\[\sin a = - \sqrt{1 - \left( - \frac{4}{5} \right)^{2}} =\]
\[= - \sqrt{\frac{25}{25} - \frac{16}{25}} = - \sqrt{\frac{9}{25}} = - \frac{3}{5}\]
\[\sin{2a} = 2\sin a \bullet \cos a\]
\[\sin{2a} = 2 \bullet \left( - \frac{3}{5} \right) \bullet \left( - \frac{4}{5} \right) = \frac{24}{25}\]
\[Ответ:\ \ \frac{24}{25}\text{.\ }\]