\[\boxed{\mathbf{1035.}}\]
\[1)\ \frac{\sin(a + \beta)}{\sin(a - \beta)} = \frac{tg\ a + tg\ \beta}{tg\ a - tg\ \beta}\]
\[Преобразуем\ левую\ часть\ \]
\[равенства:\]
\[3)\cos\left( \frac{\pi}{4} + a \right) =\]
\[= \frac{\sqrt{2}}{2}\left( \cos a - \sin a \right)\]
\[Преобразуем\ левую\ часть\ \]
\[равенства:\]
\[\cos\left( \frac{\pi}{4} + a \right) = \cos\frac{\pi}{4} \bullet \cos a -\]
\[- \sin\frac{\pi}{4} \bullet \sin a = \frac{\sqrt{2}}{2}\cos a -\]
\[- \frac{\sqrt{2}}{2}\sin a =\]
\[= \frac{\sqrt{2}}{2}\left( \cos a - \sin a \right)\]
\[\frac{\sqrt{2}}{2}\left( \cos a - \sin a \right) =\]
\[= \frac{\sqrt{2}}{2}\left( \cos a - \sin a \right)\]
\[Что\ и\ требовалось\ доказать.\]
\[4)\ \frac{\cos(a + \beta)}{\cos a \bullet \sin\beta} = ctg\ \beta - tg\ a\]
\[Преобразуем\ левую\ часть\]
\[\ равенства:\]
\[\frac{\cos(a + \beta)}{\cos a \bullet \sin\beta} =\]
\[= \frac{\cos a \bullet \cos\beta - \sin a \bullet \sin\beta}{\cos a \bullet \sin\beta} =\]
\[= \frac{\cos\beta}{\sin\beta} - \frac{\sin a}{\cos a} = ctg\ \beta - tg\ a\]
\[ctg\ \beta - tg\ a = ctg\ \beta - tg\ a\]
\[Что\ и\ требовалось\ доказать.\]