\[\boxed{\mathbf{1033.}}\]
\[\sin\alpha = \frac{4}{5}\text{\ \ }и\ \ \frac{\pi}{2} < \alpha < \pi;\]
\[\cos\beta = \frac{8}{17}\text{\ \ }и\ \ \frac{3\pi}{2} < \beta < 2\pi.\]
\[Точка,\ соответствующая\ \]
\[повороту\ на\ угол\ \alpha,\ лежит\ \]
\[во\ \text{II\ }четверти:\]
\[\cos a = - \sqrt{1 - \sin^{2}a} =\]
\[= - \sqrt{1 - \left( \frac{4}{5} \right)^{2}} = - \sqrt{\frac{25}{25} - \frac{16}{25}} =\]
\[= - \sqrt{\frac{9}{25}} = - \frac{3}{5}\]
\[Точка,\ соответствующая\]
\[\ повороту\ на\ угол\ \beta,\ лежит\ \]
\[в\ \text{IV\ }четверти:\]
\[\sin\beta = - \sqrt{1 - \cos^{2}\beta} =\]
\[= - \sqrt{1 - \left( \frac{8}{17} \right)^{2}} =\]
\[= - \sqrt{\frac{289}{289} - \frac{64}{289}} =\]
\[= - \sqrt{\frac{225}{289}} = - \frac{15}{17}\]
\[Получаем:\]
\[\text{tg}(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} =\]
\[= \frac{\sin\alpha \bullet \cos\beta + \cos a \bullet \sin\beta}{\cos\alpha \bullet \cos\beta - \sin\alpha \bullet \sin\beta}\]