\[( - 1)^{m + 1} \cdot \frac{1}{m + 1} - \frac{m}{m - 1} =\]
\[= \frac{( - 1)^{m + 1}}{m + 1} - \frac{m}{m - 1}\]
\[m = 0:\]
\[\frac{1}{1} - \frac{0}{- 1} = 1.\]
\[m = 1:\]
\[\frac{1}{2} - \frac{1}{0} - не\ имеет\ смысла.\]
\[m = 2:\]
\[- \frac{1}{3} - \frac{2}{1} = - \frac{1}{3} - 2 = - 2\frac{1}{3}.\]
\[m = 3:\]
\[\frac{1}{4} - \frac{3}{2} = \frac{1}{4} - 1\frac{1}{2} = \frac{1}{4} - 1\frac{2}{4} = - 1\frac{1}{4}.\]
\[m = 4:\]
\[- \frac{1}{5} - \frac{4}{3} = - \frac{1}{5} - 1\frac{1}{3} =\]
\[= - \frac{3}{15} - 1\frac{5}{15} = - 1\frac{8}{15}.\]