Решение задания 55:
1) x(b+c) + y(b+c) = (b+c)(x+y)
2) a(p+q) - b(p+q) = (p+q)(a-b)
3) m(k-2) - n(k-2) = (k-2)(m-n)
4) 3c(x+y) - 5d(x+y) = (x+y)(3c-5d)
5) 5mn(3-c) + 2n(3-c) = (3-c)(5mn+2n)
6) -2t(a+7) + 3d(7+a) = (a+7)(-2t+3d)
7) 3(x+y) + 3n(x+y) = (x+y)(3+3n)
8) 8n(a-b) + m(b-a) = (a-b)(8n-m)
9) 3x(c-4) + 5y(4-c) = (c-4)(3x-5y)
10) -2q(4p-9k) + 3t(9k-4p) = -8pq + 18qk + 27kt - 12pt = -2p(4q + 6t) + 9k(2q+3t) = (9k - 4p)(2q+3t)
11) (a-b)^2 + 5x(a-b) = (a-b)(a-b+5x)
12) (3-y)^2 - x(3-y) = (3-y)(3-y-x)
13) 2(a-c)^2 - (a-c) = (a-c)(2(a-c) -1) = (a-c)(2a-2c-1)
14) 7(m^2+6) + (m^2+6)^2 = (m^2+6)(7 + m^2 + 6) = (m^2+6)(m^2+13)
15) -2(q^6-4t) + (q^6-4t)^2 = (q^6-4t)(-2 + q^6 - 4t)