Вопрос:

Вариант I. Решите уравнение: 1) 7x - 4 = x - 16 2) 13 - 5x = 8 - 2x 3) 1,3p - 11 = 0,8p + 5 4) 0,71x - 13 = 10 – 0,29x 5) 3,1(1 – 3t) + t = 0,4(t – 14) 6) 2 = (3x - 5) – (7 – 4x) 7) \frac{3}{2x-1} = \frac{5}{3x-2} Вариант II. Решите уравнение: 1) 8x – 5 = x - 40 2) 7t + 24 = t -3 3) 0,3p - 5 = 6 – 0,7p 4) 8,31x – 71 = 1,11x + 1 5) 0,2(x - 3) – 1 = 0,5(x+3) – 0,4 6) 12 = (7x – 9) – (11 – x) 7) \frac{4}{2x+3} = \frac{12}{x-1}

Ответ:

Вариант I 1) 7x - 4 = x - 16 7x - x = -16 + 4 6x = -12 x = -12 / 6 x = -2 2) 13 - 5x = 8 - 2x -5x + 2x = 8 - 13 -3x = -5 x = -5 / -3 x = 5/3 3) 1.3p - 11 = 0.8p + 5 1.3p - 0.8p = 5 + 11 0.5p = 16 p = 16 / 0.5 p = 32 4) 0.71x - 13 = 10 - 0.29x 0.71x + 0.29x = 10 + 13 x = 23 x = 23 5) 3.1(1 - 3t) + t = 0.4(t - 14) 3.1 - 9.3t + t = 0.4t - 5.6 -9.3t + t - 0.4t = -5.6 - 3.1 -8.7t = -8.7 t = -8.7 / -8.7 t = 1 6) 2 = (3x - 5) - (7 - 4x) 2 = 3x - 5 - 7 + 4x 2 = 7x - 12 7x = 14 x = 14 / 7 x = 2 7) \frac{3}{2x-1} = \frac{5}{3x-2} 3 * (3x - 2) = 5 * (2x - 1) 9x - 6 = 10x - 5 9x - 10x = -5 + 6 -x = 1 x = -1 Вариант II 1) 8x - 5 = x - 40 8x - x = -40 + 5 7x = -35 x = -35 / 7 x = -5 2) 7t + 24 = t - 3 7t - t = -3 - 24 6t = -27 t = -27 / 6 t = -9 / 2 t = -4.5 3) 0.3p - 5 = 6 - 0.7p 0.3p + 0.7p = 6 + 5 p = 11 p = 11 4) 8.31x - 71 = 1.11x + 1 8.31x - 1.11x = 1 + 71 7.2x = 72 x = 72 / 7.2 x = 10 5) 0.2(x - 3) - 1 = 0.5(x + 3) - 0.4 0.2x - 0.6 - 1 = 0.5x + 1.5 - 0.4 0.2x - 1.6 = 0.5x + 1.1 0.2x - 0.5x = 1.1 + 1.6 -0.3x = 2.7 x = 2.7 / -0.3 x = -9 6) 12 = (7x - 9) - (11 - x) 12 = 7x - 9 - 11 + x 12 = 8x - 20 8x = 12 + 20 8x = 32 x = 32 / 8 x = 4 7) \frac{4}{2x+3} = \frac{12}{x-1} 4 * (x - 1) = 12 * (2x + 3) 4x - 4 = 24x + 36 4x - 24x = 36 + 4 -20x = 40 x = 40 / -20 x = -2
Убрать каракули
Смотреть решения всех заданий с фото

Похожие