\[a_{3} = 7 \Longrightarrow a_{3} = b_{1} \cdot q^{2};\ \ \]
\[a_{5} = 28 \Longrightarrow a_{5} = b_{1} \cdot q^{4}\]
\[\frac{b_{1}q^{4}}{b_{1}q^{2}} = \frac{28}{7} = 4 \Longrightarrow q^{2} = 4 \Longrightarrow\]
\[\Longrightarrow q = 2;\ \ так\ как\ \left\{ a_{n} \right\} > 0.\]
\[7 = b_{1} \cdot 2^{2}\]
\[7 = b_{1} \cdot 4\]
\[b_{1} = 1\frac{3}{4}\]
\[S_{6} = \frac{\frac{7}{4} \cdot \left( 1 - 2^{6} \right)}{1 - 2} =\]
\[= \frac{\frac{7}{4} \cdot (1 - 64)}{- 1} = - \frac{7 \cdot ( - 63)}{4} =\]
\[= \frac{441}{4} = 110\frac{1}{4}.\]
\[Ответ:\ \ 110\frac{1}{4}.\]