\[S_{3} = 87;\ \ a_{3} + 5 = a_{1} + a_{2}.\]
\[a_{n} = a_{1} + d(n - 1)\]
\[a_{2} = a_{1} + d\]
\[a_{3} = a_{1} + 2d\]
\[a_{1} + a_{2} + a_{3} = a_{1} + a_{1} + d + a_{2} + 2d =\]
\[= 3a_{1} + 3d = 87\]
\[3 \cdot \left( a_{1} + d \right) = 87\]
\[a_{1} + d = 29 \Longrightarrow a_{1} = 29 - d.\]
\[a_{1} + 2d + 5 = a_{1} + a_{1} + d\]
\[- a_{1} + d + 5 = 0 \Longrightarrow a_{1} = d + 5.\]
\[29 - d = d + 5\]
\[2d = 24\]
\[d = 12.\]
\[a_{1} = 29 - 12 = 17.\]
\[a_{2} = 17 + 12 = 29.\]
\[a_{3} = 29 + 12 = 41.\]
\[Ответ:наибольшее\ число\ 41.\]