\[b_{6} - b_{4} = 8;\ \ b_{5} - b_{3} = 24.\]
\[b_{1}q^{5} - b_{1}q^{3} = b_{1}q^{3}\left( q^{2} - 1 \right) =\]
\[= q \cdot b_{1}q^{2}\left( q^{2} - 1 \right) = 8;\]
\[b_{1}q^{4} - b_{1}q^{2} = b_{1}q^{2}\left( q^{2} - 1 \right) = 24.\]
\[\left\{ \begin{matrix} q \cdot 24 = 8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ b_{1}q^{2}\left( q^{2} - 1 \right) = 24 \\ \end{matrix} \right.\ \]
\[q = \frac{8}{24} = \frac{1}{3}:\]
\[b_{1} \cdot \left( \frac{1}{3} \right)^{2}\left( \left( \frac{1}{3} \right)^{2} - 1 \right) = 24\]
\[\frac{1}{9}b_{1}\left( \frac{1}{9} - 1 \right) = 24\]
\[- \frac{8}{9}b_{1} = 24 \cdot 9\]
\[b_{1} = - \frac{24 \cdot 9 \cdot 9}{8} = - 3 \cdot 81\]
\[b_{1} = - 243.\]
\[Ответ:\ - 243;\ \frac{1}{3}.\]