\[\left\{ \begin{matrix} a_{7} + a_{9} = 12\ \ \\ a_{6} \cdot a_{10} = - 28 \\ \end{matrix}\text{\ \ } \right.\ \]
\[a_{7} = a_{1} + 6d\ \ \ \]
\[\ a_{9} = a_{1} + 8d\]
\[a_{6} = a_{1} + 5d\ \ \ \ \]
\[a_{10} = a_{1} + 9d\]
\[\left\{ \begin{matrix} a_{1} + 6d + a_{1} + 8d = 12\ \ \ \ \\ \left( a_{1} + 5d \right)\left( a_{1} + 9d \right) = - 28 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} 2a_{1} + 14d = 12\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ a_{1}^{2} + 9a_{1}d + 5a_{1}d + 45d^{2} = - 28 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} a_{1} + 7d = 6 \longrightarrow a_{1} = 6 - 7d \\ a_{1}^{2} + 14a_{1}d + 45d^{2} = - 28\ \ \ \\ \end{matrix} \right.\ \]
\[- 4d^{2} = - 64\ \ \ \]
\[d^{2} = - 16\ \ \ \ \]
\[d = \pm 4.\]
\[a_{1} = 6 - 7 \cdot ( \pm 4) = 6 \pm 28 =\]
\[= 34;\ \ \ - 22\]
\[Ответ:\ \ \ a_{11} = 34;\ \ \ \ \ d_{1} = - 4\ \ \]
\[\ или\ \ \ \ a_{12} = - 22;\ \ \ \ d_{2} = 4.\]