\[\left\{ \begin{matrix} \frac{b_{1}}{1 - q} = 162\ \ \ \ \ \ \ \ \ \ \\ \frac{b_{1}\left( q^{4} - 1 \right)}{q - 1} = 160 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} b_{1} = 162\ \cdot (1 - q)\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \frac{162 \cdot (1 - q)\left( q^{4} - 1 \right)}{q - 1} = 160 \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\]
\[\left\{ \begin{matrix} b_{1} = 162 \cdot (1 - q)\text{\ \ \ \ \ \ \ \ } \\ 162 \cdot \left( q^{4} - 1 \right) = - 160 \\ \end{matrix} \right.\ \]
\[q^{4} - 1 = - \frac{160}{162}\]
\[q^{4} - 1 = - \frac{80}{81}\]
\[q^{4} = \frac{1}{81}\]
\[q = \pm \frac{1}{3}.\]
\[Ответ:q = \frac{1}{3};\]
\[b_{1} = 108\ \ или\ \ q = - \frac{1}{3};\ \ \]
\[b_{1} = 216.\]