\[По\ теореме\ Виета:\]
\[x_{1} + x_{2} = - b;\ \ \ \ \]
\[x_{1} \cdot x_{2} = c.\]
\[x_{1} = - \frac{4}{9};x_{2} = - \frac{1}{6}:\]
\[x_{1} + x_{2} = - \frac{4}{9} - \frac{1}{6} =\]
\[= - \frac{8}{18} - \frac{3}{18} = - \frac{11}{18};\]
\[x_{1} \cdot x_{2} = - \frac{4}{9} \cdot \left( - \frac{1}{6} \right) = \frac{2}{27};\]
\[x^{2} + \frac{11}{18}x + \frac{2}{27} = 0\ \ \ \ \ | \cdot 54\]
\[\Longrightarrow 54x^{2} + 33x + 4 = 0.\]