Alright class, let's solve the inequality: $(2.5)^{(x+1)^2} cdot (0.4)^{4|x-1|} \ge (\frac{25}{4})^{6.5}$.
First, we rewrite the numbers as fractions:
$2.5 = \frac{5}{2}$ and $0.4 = \frac{2}{5}$. Also, $\frac{25}{4} = (\frac{5}{2})^2$.
So, the inequality becomes:
$(\frac{5}{2})^{(x+1)^2} cdot (\frac{2}{5})^{4|x-1|} \ge ((\frac{5}{2})^2)^{6.5}$
We can rewrite $(\frac{2}{5})$ as $(\frac{5}{2})^{-1}$, thus:
$(\frac{5}{2})^{(x+1)^2} cdot ((\frac{5}{2})^{-1})^{4|x-1|} \ge (\frac{5}{2})^{2 cdot 6.5}$
Simplify the exponents:
$(\frac{5}{2})^{(x+1)^2} cdot (\frac{5}{2})^{-4|x-1|} \ge (\frac{5}{2})^{13}$
Now, combine the terms on the left side using the properties of exponents:
$(\frac{5}{2})^{(x+1)^2 - 4|x-1|} \ge (\frac{5}{2})^{13}$
Since the base is greater than 1, we can compare the exponents directly:
$(x+1)^2 - 4|x-1| \ge 13$
$x^2 + 2x + 1 - 4|x-1| \ge 13$
$x^2 + 2x - 12 \ge 4|x-1|$
Now we consider two cases for the absolute value:
Case 1: $x \ge 1$
In this case, $|x-1| = x-1$, so the inequality becomes:
$x^2 + 2x - 12 \ge 4(x-1)$
$x^2 + 2x - 12 \ge 4x - 4$
$x^2 - 2x - 8 \ge 0$
$(x-4)(x+2) \ge 0$
The solutions are $x \le -2$ or $x \ge 4$. Since we have the condition $x \ge 1$, the solution for this case is $x \ge 4$.
Case 2: $x < 1$
In this case, $|x-1| = -(x-1) = 1-x$, so the inequality becomes:
$x^2 + 2x - 12 \ge 4(1-x)$
$x^2 + 2x - 12 \ge 4 - 4x$
$x^2 + 6x - 16 \ge 0$
$(x+8)(x-2) \ge 0$
The solutions are $x \le -8$ or $x \ge 2$. Since we have the condition $x < 1$, the solution for this case is $x \le -8$.
Combining both cases, the solution is $x \le -8$ or $x \ge 4$.
Final Answer: The final answer is $\boxed{x \le -8 \text{ or } x \ge 4}$