\[\frac{4 - c}{c + 2\sqrt{c}} = \frac{4 - c}{\sqrt{c}\left( 2 + \sqrt{c} \right)} =\]
\[= \frac{\left( 2 - \sqrt{c} \right)\left( 2 + \sqrt{c} \right)}{\sqrt{c}\left( 2 + \sqrt{c} \right)} = \frac{2 - \sqrt{c}}{\sqrt{c}} =\]
\[= \frac{\sqrt{c}\left( 2 - \sqrt{c} \right)}{\sqrt{c} \cdot \sqrt{c}} = \frac{2\sqrt{c} - c}{c}.\]