\[- 7; - 6; - 5;\ldots \Longrightarrow d = 1;\ \ \ \ \]
\[S_{n} = \frac{2a_{1} + (n - 1)d}{2} \cdot n\]
\[S_{n} = \frac{2 \cdot ( - 7) + (n - 1) \cdot 1}{2} =\]
\[= \frac{- 14 + (n - 1)}{2} \cdot n =\]
\[= \frac{- 14 + n - 1}{2} \cdot n =\]
\[= \frac{(n - 15)n}{2} = \frac{n^{2} - 15n}{2}\]
\[\frac{n^{2} - 15n}{2} = - 27\]
\[n^{2} - 15n = - 54\]
\[n^{2} - 15n + 54 = 0\]
\[n_{1} = 9;\ \ \ \ n_{2} = 6.\]
\[Ответ:6\ или\ 9.\]