Дано:
m = 2 кг
Погруженная часть объема = 1/3 V
\(\rho_воды\) = 1000 кг/м³
g = 9.8 м/с² (можно принять за 10 м/с² для упрощения)
Решение:
Шар плавает, значит, сила тяжести, действующая на шар, равна выталкивающей силе (силе Архимеда).
\(F_тяж\) = \(F_Арх\)
\(m * g = \rho_воды * g * V_{погруж}\)
\(m = \rho_воды * V_{погруж}\)
Так как погружена 1/3 объема:
\(m = \rho_воды * \frac{1}{3}V\)
Выразим объем шара:
\(V = \frac{3m}{\rho_воды}\)
Подставим значения:
\(V = \frac{3 * 2 кг}{1000 кг/м³} = \frac{6}{1000} м³ = 0.006 м³\)
Переведем в литры (1 м³ = 1000 литров):
\(V = 0.006 м³ * 1000 л/м³ = 6 л\)
Ответ:
Объем шара равен **0.006 м³** или **6 литров**.
Убрать каракули