\[x(x + 1) = \frac{24}{(x - 1)(x + 2)}\]
\[x^{2} + x = \frac{24}{x^{2} + x - 2}\]
\[Пусть\ y = x^{2} + x:\]
\[y = \frac{24}{y - 2}\]
\[ОДЗ:\ \ y \neq 2\]
\[y(y - 2) = 24\]
\[y^{2} - 2y - 24 = 0\]
\[y_{1} + y_{2} = 2\]
\[y_{1} \cdot y_{2} = - 24 \Longrightarrow y_{1} = 6;\ \ y_{2} =\]
\[= - 4\]
\[1)\ x² + x = 6\]
\[x^{2} + x - 6 = 0\]
\[x_{1} + x_{2} = - 1\]
\[x_{1} \cdot x_{2} = - 6 \Longrightarrow x_{1} = - 3;\ \ x_{2} =\]
\[= 2\]
\[2)\ x² + x = - 4\]
\[x^{2} + x + 4 = 0\]
\[D = b^{2} - 4ac =\]
\[= 1 - 4 \cdot 1 \cdot 4 < 0 \Longrightarrow\]
\[\Longrightarrow нет\ решения.\]
\[Ответ:x = - 3;\ \ x = 2.\]