\[x² + x + 1 = \frac{15}{x^{2} + x + 3}\]
\[Пусть\ y = x^{2} + x + 1:\]
\[y = \frac{15}{y + 2}\]
\[ОДЗ:\ \ y \neq - 2\]
\[y(y + 2) = 15\]
\[y^{2} + 2y - 15 = 0\]
\[y_{1} + y_{2} = - 2\]
\[y_{1} \cdot y_{2} = - 15 \Longrightarrow y_{1} = - 5;\ \ y_{2} =\]
\[= 3\]
\[1)\ x² + x + 1 = - 5\]
\[x^{2} + x + 6 = 0\]
\[x_{1} \cdot x_{2} = - 1\]
\[x_{1} \cdot x_{2} = 6 \Longrightarrow нет\ решения.\]
\[D = b² - 4ac = 1 - 4 \cdot 6 < 0.\]
\[2)\ x² + x + 1 = 3\]
\[x^{2} + x - 2 = 0\]
\[x_{1} + x_{2} = - 1\]
\[x_{1} \cdot x_{2} = - 2 \Longrightarrow x_{1} = - 2;\ \ x_{2} =\]
\[= 1.\]
\[Ответ:x = - 2;\ \ x = 1.\]