1) x² + 2x - 24 = 0
D = 2² - 4 * 1 * (-24) = 4 + 96 = 100
x₁ = (-2 + √100) / 2 = (-2 + 10) / 2 = 8 / 2 = 4
x₂ = (-2 - √100) / 2 = (-2 - 10) / 2 = -12 / 2 = -6
Ответ: x = 4, x = -6
2) x² - 9x + 20 = 0
D = (-9)² - 4 * 1 * 20 = 81 - 80 = 1
x₁ = (9 + √1) / 2 = (9 + 1) / 2 = 10 / 2 = 5
x₂ = (9 - √1) / 2 = (9 - 1) / 2 = 8 / 2 = 4
Ответ: x = 5, x = 4
3) 10n² – 9n + 2 = 0
D = (-9)² - 4 * 10 * 2 = 81 - 80 = 1
n₁ = (9 + √1) / 20 = (9 + 1) / 20 = 10 / 20 = 1/2
n₂ = (9 - √1) / 20 = (9 - 1) / 20 = 8 / 20 = 2/5
Ответ: n = 1/2, n = 2/5
4) 21y² - 2y - 3 = 0
D = (-2)² - 4 * 21 * (-3) = 4 + 252 = 256
y₁ = (2 + √256) / 42 = (2 + 16) / 42 = 18 / 42 = 3/7
y₂ = (2 - √256) / 42 = (2 - 16) / 42 = -14 / 42 = -1/3
Ответ: y = 3/7, y = -1/3
5) x² + 8x - 13 = 0
D = 8² - 4 * 1 * (-13) = 64 + 52 = 116
x₁ = (-8 + √116) / 2 = (-8 + 2√29) / 2 = -4 + √29
x₂ = (-8 - √116) / 2 = (-8 - 2√29) / 2 = -4 - √29
Ответ: x = -4 + √29, x = -4 - √29
6) 2x² - 4x - 17 = 0
D = (-4)² - 4 * 2 * (-17) = 16 + 136 = 152
x₁ = (4 + √152) / 4 = (4 + 2√38) / 4 = 1 + √38 / 2
x₂ = (4 - √152) / 4 = (4 - 2√38) / 4 = 1 - √38 / 2
Ответ: x = 1 + √38 / 2, x = 1 - √38 / 2
7) 9x² + 42x + 49 = 0
D = 42² - 4 * 9 * 49 = 1764 - 1764 = 0
x = -42 / (2 * 9) = -42 / 18 = -7 / 3
Ответ: x = -7/3
8) x² - 10x + 37 = 0
D = (-10)² - 4 * 1 * 37 = 100 - 148 = -48
Т.к. дискриминант отрицательный, уравнение не имеет действительных корней.
Ответ: нет действительных корней