\[x^{4} - 3x^{2} - 4 = 0\]
\[t = x^{2},\ \ \ t \geq 0\]
\[t^{2} - 3t - 4 = 0\]
\[D = ( - {3)}^{2} - 4 \cdot 1 \cdot ( - 4) =\]
\[= 9 + 16 = 25\]
\[t_{1} = \frac{3 + \sqrt{25}}{2} = \frac{2 + 5}{2} = \frac{8}{2} = 4\]
\[t_{2} = \frac{3 - \sqrt{25}}{2} = \frac{3 - 5}{2} = \frac{- 2}{2} =\]
\[= - 1\ (не\ подходит).\]
\[x^{2} = 4\]
\[x = \pm 2\]
\[Ответ:2;\ - 2.\]