\[x^{3} + ax^{2} - 5x - 6 = 0\]
\[Так\ как\ 2 - корень \Longrightarrow\]
\[\Longrightarrow 4a - 8 = 0.\]
\[4a - 8 = 0\]
\[4a = 8\]
\[a = 2.\]
\[x^{3} + 2x^{2} - 5x - 6 = 0\]
\[x^{2} + (a + 2)x + (2a - 1) =\]
\[= x^{2} + 4x + 3\]
\[(x - 2)\left( x^{2} + 4x + 3 \right) = 0\]
\[x - 2 = 0;\ \ \ \ \ \ x = 2.\]
\[x^{2} + 4x + 3 = 0\]
\[D = 4^{2} - 4 \cdot 1 \cdot 3 = 16 - 12 = 4;\ \ \ \ \]
\[\text{\ \ }\sqrt{D} = 2.\]
\[x_{1} = \frac{- 4 - 2}{2} = \frac{- 6}{2} = - 3;\ \ \ \]
\[\text{\ \ \ \ \ }x_{2} = \frac{- 4 + 2}{2} = \frac{- 2}{2} = - 1\]
\[Ответ:2;\ - 3;\ - 1.\]