\[\ x² - \frac{9x + 2}{5} = 0\]
\[x² = \frac{9x + 2}{5}\]
\[5x^{2} = 9x + 2\]
\[5x^{2} - 9x - 2 = 0\]
\[D = b^{2} - 4ac = 81 - 4 \cdot 5 \cdot ( - 2) =\]
\[= 81 + 40 = 121\]
\[x_{1} = \frac{9 - 11}{10} = - \frac{2}{10} = - 0,2\]
\[x_{2} = \frac{9 + 11}{10} = \frac{20}{10} = 2\]
\[Ответ:x = - 0,2\ \ \ и\ \ x = 2.\]
\[x^{4} + x^{2} - 2 = 0\]
\[Пусть\ \ t = x^{2};\ \ t \geq 0:\]
\[t^{2} + t - 2 = 0\]
\[t_{1} + t_{2} = - 1\]
\[t_{1} \cdot t_{2} = - 2 \Longrightarrow t_{1} = - 2\ \ и\ \ t_{2} = 1.\]
\[x^{2} = 1\]
\[x = \pm 1\]
\[Ответ:\ \ x = \pm 1.\]
\[\frac{2x^{2} + 11x - 21}{4x^{2} - 9} = \frac{(2x - 3)(x + 7)}{(2x - 3)(2x + 3)} =\]
\[= \frac{x + 7}{2x + 3}\]
\[2x^{2} + 11x - 21 = 2 \cdot (x - 1,5)(x + 7) =\]
\[= (2x - 3)(x + 7)\]
\[D = b^{2} - 4ac = 121 - 4 \cdot 2 \cdot ( - 21) =\]
\[= 121 + 168 = 289\]
\[x_{1} = \frac{- 11 + 17}{4} = \frac{6}{4} = 1,5\]
\[x_{2} = \frac{- 11 - 17}{4} = - \frac{28}{4} = - 7.\]
\[x^{2} + 11x + c = 0\ \ \ \ и\ \ \ \ x_{1} = - 3\]
\[x_{1} + x_{2} = - 11 \Longrightarrow - 3 + x_{2} = - 11 \Longrightarrow\]
\[x_{2} = - 8.\]
\[x_{1} \cdot x_{2} = c \Longrightarrow c = - 3 \cdot ( - 8) \Longrightarrow c = 24.\]
\[Ответ:\ \ x_{2} = - 8\ \ \ и\ \ c = 24.\]
\[\frac{9}{x - 2} - \frac{5}{x} = 2;\ \ \ \ \ \ x
eq 2;\ \ \ x
eq 0\]
\[\frac{9x - 5 \cdot (x - 2)}{x(x - 2)} = 2\]
\[9x - 5x + 10 = 2x(x - 2)\]
\[4x + 10 = 2x^{2} - 4x\]
\[2x^{2} - 8x - 10 = 0\ \ \ \ |\ :2\]
\[x^{2} - 4x - 5 = 0\]
\[x_{1} + x_{2} = 4\]
\[x_{1} \cdot x_{2} = - 5 \Longrightarrow x_{1} = 5\ \ \ и\ \ x_{2} = - 1.\]
\[Ответ:\ \ x = 5\ \ \ и\ x = - 1.\]
\[\left\{ \begin{matrix} x - 2y = 4 \\ \text{xy} = 6\ \ \ \ \ \ \ \\ \end{matrix}\text{\ \ \ \ \ \ } \right.\ \left\{ \begin{matrix} x = 4 + 2y\text{\ \ \ \ \ } \\ (4 + 2y)y = 6 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} x = 4 + 2y\ \ \ \ \ \ \ \ \ \ \ \ \\ 2y^{2} + 4y - 6 = 0 \\ \end{matrix} \right.\ \text{\ \ \ }\]
\[\left\{ \begin{matrix} x = 4 + 2y\ \ \ \ \ \ \ \ \\ y^{2} + 2y - 3 = 0 \\ \end{matrix} \right.\ \]
\[y^{2} + 2y - 3 = 0\]
\[y_{1} + y_{2} = - 2\]
\[y_{1} \cdot y_{2} = - 3 \Longrightarrow y_{1} = - 3\ \ \ и\ \ \ y_{2} = 1\]
\[\left\{ \begin{matrix}
x
eq 4 + 2y \\
\left\lbrack \begin{matrix}
y_{1} = - 3 \\
y_{2} = 1\ \ \ \\
\end{matrix} \right.\ \text{\ \ \ \ } \\
\end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\left\lbrack \begin{matrix}
\left\{ \begin{matrix}
y = - 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\
x = 4 + 2 \cdot ( - 3) \\
\end{matrix}\ \right.\ \\
\left\{ \begin{matrix}
y = 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\
x = 4 + 2 \cdot 1\ \ \ \ \ \ \ \\
\end{matrix} \right.\ \\
\end{matrix} \right.\ \]
\(\left\lbrack \begin{matrix} \left\{ \begin{matrix} y = - 3 \\ x = - 2 \\ \end{matrix}\text{\ \ } \right.\ \\ \left\{ \begin{matrix} y = 1\ \ \ \ \ \\ x = 6\ \ \ \ \\ \end{matrix} \right.\ \\ \end{matrix} \right.\ \)
\[Ответ:\ \ ( - 2;\ - 3);\ \ \ (6;1).\]