\[\left( x^{2} + 3x + 4 \right)\left( x^{2} + 3x + 9 \right) = 266\]
\[Пусть\ t = x^{2} + 3x + 4:\]
\[t(t + 5) = 266\]
\[t^{2} + 5t - 266 = 0\]
\[D = 25 + 1064 = 1089 = 33^{2}\]
\[t_{1} = \frac{- 5 + 33}{2} = 14;\ \ \ \]
\[t_{2} = \frac{- 5 - 33}{2} = - 19.\]
\[Подставим:\]
\[1)\ x^{2} + 3x + 4 = 14\]
\[x^{2} + 3x - 10 = 0\]
\[x_{1} + x_{2} = - 3;\ \ \ \ x_{1} \cdot x_{2} = 10\]
\[x_{1} = - 5;\ \ \ x_{2} = 2.\]
\[2)\ x^{2} + 3x + 4 = - 19\]
\[x^{2} + 3x + 23 = 0\]
\[D = 9 - 92 = - 83 < 0\]
\[нет\ корней.\]
\[Ответ:x = - 5;\ \ x = 2.\]