\[(x + 3)^{4} + (x + 5)^{4} = 272\]
\[t = \frac{x + 3 + x + 5}{2} = \frac{2x + 8}{2} =\]
\[= x + 4\]
\[(t - 1)^{4} + (t + 1)^{4} = 272\]
\[2t^{4} + 12t^{2} - 270 = 0\ \ \ \ \ \ |\ :2\]
\[t^{4} + 6t^{2} - 135 = 0\]
\[y = t^{2};\ \ \ \ \ \ y \geq 0.\]
\[y^{2} + 6y - 135 = 0\]
\[D = 6^{2} - 4 \cdot 1 \cdot ( - 135) =\]
\[= 36 + 540 = 576\]
\[y_{1} = \frac{- 6 + \sqrt{576}}{2} = \frac{- 6 + 24}{2} =\]
\[= \frac{18}{2} = 9\]
\[y_{2} = \frac{- 6 - \sqrt{576}}{2} = \frac{- 6 - 24}{2} =\]
\[= \frac{- 30}{2} = - 15\ (не\ подходит).\]
\[t^{2} = 9\]
\[Ответ:\ - 1;\ - 7.\]