\[t = x^{2} - 2x - 1\]
\[(3t + 5)t - (5t + 12) = 0\]
\[3t^{2} - 12 = 0\]
\[3 \bullet \left( t^{2} - 4 \right) = 0\]
\[(t - 2)(t + 2) = 0\]
\[1)\ x^{2} - 2x - 1 = 2\]
\[x² - 2x - 3 = 0\]
\[D = ( - 2)^{2} - 4 \cdot 1 \cdot ( - 3) =\]
\[= 4 + 12 = 16\]
\[x_{1} = \frac{2 + \sqrt{16}}{2} = \frac{2 + 4}{2} = \frac{6}{2} = 3\]
\[x_{2} = \frac{2 - \sqrt{16}}{2} = \frac{2 - 4}{2} = \frac{- 2}{2} =\]
\[= - 1\]
\[2)\ x^{2} - 2x - 1 = - 2\]
\[x^{2} - 2x + 1 = 0\]
\[(x - 1)^{2} = 0\]
\[x - 1 = 0\]
\[x = 1\]
\[Ответ:3;\ - 1;1.\]