Вопрос:

Решите уравнение методом замены переменной: (x^2+4x-1)/3-4/(3x^2+12x-3)=1.

Ответ:

\[\frac{x^{2} + 4x - 1}{3} - \frac{4}{3x^{2} + 12x - 3} = 1\]

\[Пусть\ \ t = x^{2} + 4x - 1:\ \]

\[\frac{t}{3} - \frac{4}{3t} - 1 = 0\ \ \ \ \ \ \ \ | \cdot 3t\]

\[t² - 3t - 4 = 0\]

\[t_{1} + t_{2} = 3;\ \ t_{1} \cdot t_{2} = - 4\]

\[t_{1} = 4,\ \ t_{2} = - 1.\]


Похожие