\[\sqrt{x - 1} = 3x - 7\]
\[t = \sqrt{x - 1}\]
\[- 3t^{2} + t + 4 = 0\]
\[3t^{2} - t - 4 = 0\]
\[t_{1} = - 1;\ \ \ t_{2} = 1\frac{1}{3}\]
\[1)\ \sqrt{x - 1} = - 1;\ \ \ \]
\[\sqrt{x - 1} \geq 0 \Longrightarrow нет\ решения;\]
\[2)\ \sqrt{x - 1} = \frac{4}{3}\]
\[x - 1 = \left( \frac{4}{3} \right)^{2}\]
\[x - 1 = \frac{16}{9}\]
\[x = 1\frac{7}{9} + 1\]
\[x = 2\frac{7}{9}\]
\[Ответ:2\frac{7}{9}\text{.\ }\]