\[\sqrt{x^{2} + 3x - 10} \geq 0;\ \ \]
\[\sqrt{x^{2} - 10x + 16} \geq 0 \Longrightarrow сумма\ \]
\[равна\ 0,\ если\ оба\ корня\ \]
\[равны\ 0.\]
\[x^{2} + 3x - 10 = 0\]
\[D = 3^{2} - 4 \cdot 1 \cdot ( - 10) =\]
\[= 9 + 40 = 49\]
\[x_{1} = \frac{- 3 + \sqrt{49}}{2} = \frac{- 3 + 7}{2} =\]
\[= \frac{4}{2} = 2\]
\[x_{2} = \frac{- 3 - \sqrt{49}}{2} = \frac{- 3 - 7}{2} =\]
\[= - \frac{10}{2} = - 5\]
\[x^{2} - 10x + 16 = 0\]
\[D = ( - 10)^{2} - 4 \cdot 1 \cdot 16 =\]
\[= 100 - 64 = 36\]
\[x_{1} = \frac{10 + \sqrt{36}}{2} = \frac{10 + 6}{2} =\]
\[= \frac{16}{2} = 8\]
\[x_{2} = \frac{10 - \sqrt{36}}{2} = \frac{10 - 6}{2} =\]
\[= \frac{4}{2} = 2\]
\[Ответ:x = 2.\]