\[\sqrt{x^{2} - 121} + \left| x^{2} + 2x - 63 \right| = 0\]
\[\sqrt{x^{2} - 121} \geq 0;\ \ \]
\[\left| x^{2} + 2x - 63 \right| \geq 0 \Longrightarrow сумма\ \]
\[равна\ 0,\ если\ каждое\ \]
\[из\ выражений\ равно\ 0.\]
\[x^{2} - 121 = 0\ \ \]
\[x^{2} = 121\ \ \]
\[x = \pm 11.\]
\[x^{2} + 2x - 63 = 0\]
\[D = 2^{2} - 4 \cdot 1 \cdot ( - 63) =\]
\[= 4 + 252 = 256\]
\[x_{1} = \frac{- 2 + \sqrt{256}}{2} = \frac{- 2 + 16}{2} =\]
\[= \frac{14}{2} = 7;\]
\[x_{2} = \frac{- 2 - \sqrt{256}}{2} = \frac{- 2 - 16}{2} =\]
\[= - \frac{18}{2} = - 9.\]
\[Ответ:нет\ решений.\]