\[\sqrt{5x + 11} = x + 1\]
\[5x + 11 = (x + 1)^{2}\]
\[5x + 11 = x^{2} + 2x + 1\]
\[x^{2} - 3x - 10 = 0\]
\[x_{1} + x_{2} = 3;\ \ \ x_{1} \cdot x_{2} = - 10\]
\[x_{1} = 5;\ \ \ \]
\[x_{2} = - 2 < 0 - не\ является\ \]
\[корнем\ уравнения.\]
\[Проверим\ x = 5:\]
\[\sqrt{25 + 11} = 5 + 1\]
\[\sqrt{36} = 6\]
\[6 = 6\]
\[x = 5 - корень\ уравнения.\]
\[Ответ:x = 5.\]