\[\left( x^{2} + 2x \right)^{2} - 2 \cdot \left( x^{2} + 2x \right) - 3 =\]
\[= 0\]
\[Пусть\ \left( x^{2} + 2x \right) = a:\]
\[a^{2} - 2a - 3 = 0\]
\[D = 1 + 3 = 4\]
\[a_{1} = 1 + 2 = 3;\ \ \ \]
\[a_{2} = 1 - 2 = - 1.\]
\[Подставим:\]
\[1)\ x^{2} + 2x = 3\]
\[x^{2} + 2x - 3 = 0\]
\[D = 1 + 3 = 4\]
\[x_{1} = - 1 + 2 = 1;\ \ \]
\[x_{2} = - 1 - 2 = - 3.\]
\[в)\ x^{2} + 2x = - 1\]
\[x^{2} + 2x + 1 = 0\]
\[(x + 1)^{2} = 0\]
\[x = - 1.\]
\[Ответ:\ \ x = \pm 1;\ \ x = - 3.\]