\[\frac{5y - 2}{2y + 1} = \frac{3y + 2}{y + 3}\]
\[\frac{5y - 2}{2y + 1} - \frac{3y + 2}{y + 3} = 0\]
\[ОДЗ:\ \ \ y \neq - \frac{1}{2}\]
\[\ \ \ \ \ \ \ \ \ \ \ \ y \neq - 3\]
\[\frac{5y² + 13y - 6 - 6y^{2} - 7y - 2}{(2y + 1)(y + 3)} = 0\]
\[\frac{- y^{2} + 6y - 8}{(2y + )(y + 3)} = 0\]
\[- y^{2} + 6y - 8 = 0\ \ \ \ \ | \cdot ( - 1)\ \]
\[y^{2} - 6y + 8 = 0\]
\[y_{1} + y_{2} = 6\]
\[y_{1} \cdot y_{2} = 8 \Longrightarrow y_{1} = 4;\ \ y_{2} = 2\]
\[Ответ:\ \ y = 4\ \ \ \ и\ \ \ y = 2.\]