\[\frac{4x + 1}{x - 3} = \frac{3x - 8}{x + 1}\]
\[ОДЗ:\ \ x \neq 3\]
\[\ \ \ \ \ \ \ \ \ \ \ \ x \neq - 1\]
\[\frac{4x + 1}{x - 3} - \frac{3x - 8}{x + 1} = 0\]
\[\frac{x^{2} + 22x - 23}{(x + 1)(x - 3)} = 0\]
\[x_{1} + x_{2} = - 22\]
\[x_{1} \cdot x_{2} = - 23 \Longrightarrow x_{1} = - 23;\ \ \ \]
\[x_{2} = 1\]
\[Ответ:\ \ x = - 23\ \ \ \ и\ \ \ x = 1.\]