\[|x - 3|\left( x^{2} + 4x - 1 \right) =\]
\[= 4 \bullet (x - 3)\]
\[(x - 3)\left( - x^{2} - 4x + 1 - 4 \right) = 0\]
\[(x - 3)\left( - x^{2} - 4x - 3 \right) = 0\]
\[(x - 3)\left( x^{2} + 4x + 3 \right) = 0\]
\[x = 3 \Longrightarrow \ \ не\ подходит.\]
\[x^{2} + 4x + 3 = 0\]
\[D = 4^{2} - 4 \cdot 1 \cdot 3 = 16 - 12 = 4\]
\[x_{1} = \frac{- 4 + \sqrt{4}}{2} = \frac{- 4 + 2}{2} = \frac{- 2}{2} =\]
\[= - 1\]
\[x_{2} = \frac{- 4 - \sqrt{4}}{2} = \frac{- 4 - 2}{2} = \frac{- 6}{2} =\]
\[= - 3.\]
\[(x - 3)\left( x^{2} + 4x - 1 - 4 \right) = 0\]
\[(x - 3)\left( x^{2} + 4x - 5 \right) = 0\]
\[x = 3.\]
\[x^{2} + 4x - 5 = 0\]
\[D = 4^{2} - 4 \cdot 1 \cdot ( - 5) =\]
\[= 15 + 20 = 36\]
\[x_{1} = \frac{- 4 + \sqrt{36}}{2} = \frac{- 4 + 6}{2} = \frac{2}{2} =\]
\[= 1 \Longrightarrow \ \ не\ подходит.\]
\[x_{2} = \frac{- 4 - \sqrt{36}}{2} = \frac{- 4 - 6}{2} =\]
\[= \frac{- 10}{2} = - 5 \Longrightarrow \ \ не\ подходит.\]
\[Ответ:\ - 1;\ - 3;\ 3.\]