\[\left| x^{2} - 2x - 1 \right| = 2\]
\[x^{2} - 2 \cdot x - 1 = 2\]
\[x^{2} - 2x - 3 = 0\]
\[D = ( - 2)^{2} - 4 \cdot ( - 3) =\]
\[= 4 + 12 = 16\]
\[x_{1} = \frac{2 + \sqrt{16}}{2} = \frac{2 + 4}{2} = \frac{6}{2} = 3\]
\[x_{2} = \frac{2 - \sqrt{16}}{2} = \frac{2 - 4}{2} = \frac{- 2}{2} =\]
\[= - 1\]
\[x^{2} - 2x - 1 = - 2\]
\[x^{2} - 2x + 1 = 0\]
\[(x - 1)^{2} = 0\]
\[x - 1 = 0\]
\[x = 1.\]
\[Ответ:3;1;1.\]