\[\left\{ \begin{matrix} y = x^{2} - 6x + 7\ \ \\ 2x + y = 4\ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[2x + x^{2} - 6x + 7 = 4\]
\[x^{2} - 4x + 7 - 4 = 0\]
\[x^{2} - 4x + 3 = 0\]
\[D = ( - 4)^{2} - 4 \cdot 1 \cdot 3 =\]
\[= 16 - 12 = 4\]
\[x_{1} = \frac{4 + \sqrt{4}}{2} = \frac{4 + 2}{2} = \frac{6}{2} = 3\]
\[x_{2} = \frac{4 - \sqrt{4}\ }{2} = \frac{4 - 2}{2} = \frac{2}{2} = 1\]
\[x_{1} = 3 \Longrightarrow \ \ \ \ \ y_{1} =\]
\[= 3^{2} - 6 \cdot 3 + 7 = 9 - 18 + 7 =\]
\[= - 2.\]
\[x_{2} = 1 \Longrightarrow \ \ \ \ \ y_{2} =\]
\[= 1^{2} - 6 \cdot 1 + 7 = 1 - 6 + 7 = 2\]
\[Ответ:(3;\ - 2),\ \ \ (1;2).\]