\[4 \bullet (5 - x) + 3x = 3x(5 - x)\]
\[20 - 4x + 3x = 15x - 3x^{2}\]
\[20 - x - 15x + 3x^{2} = 0\]
\[3x^{2} - 16x + 20 = 0\]
\[D = ( - 16)^{2} - 4 \bullet 3 \bullet 20 =\]
\[= 256 - 240 = 16\]
\[x_{1} = \frac{16 + \sqrt{16}}{2 \cdot 3} = \frac{16 + 4}{6} = \frac{20}{6} =\]
\[= 3\frac{2}{6} = 3\frac{1}{3}\]
\[x_{2} = \frac{16 - \sqrt{16}}{2 \cdot 3} = \frac{16 - 4}{6} = \frac{12}{6} =\]
\[= 2\]
\[x_{1} = 3\frac{1}{3} \Longrightarrow \text{\ \ \ \ \ \ \ }y_{1} = 5 - 3\frac{1}{3} =\]
\[= 1\frac{2}{3}.\]
\[x_{2} = 2 \Longrightarrow \text{\ \ \ \ \ \ \ \ \ \ }y_{2} = 5 - 2 = 3.\]
\[Ответ:\left( 3\frac{1}{3};1\frac{2}{3} \right),\ (2;3).\]