\[\left\{ \begin{matrix} x - y + xy = - 4 \\ \text{xy}(x - y) = - 21 \\ \end{matrix} \right.\ \]
\[Пусть\ (x - y) = t;\ \ xy = c:\]
\[\left\{ \begin{matrix} t + c = - 4 \\ ct = - 21\ \ \ \\ \end{matrix} \right.\ \text{\ \ }\]
\[По\ теореме,\ обратной\ \]
\[теореме\ Виета:\]
\[t = - 7,\ \ \ c = 3\ \ или\ \ c = - 7,\ \ \ \]
\[t = 3.\]
\[y_{1,2} = \frac{7 \pm \sqrt{61}}{2}\]
\[x_{1,2} = \frac{7 \pm \sqrt{61} - 14}{2} = \frac{- 7 \pm \sqrt{61}}{2}\]
\[Ответ:\left( \frac{- 7 - \sqrt{61}}{2};\ \frac{7 - \sqrt{61}}{2} \right);\ \ \]
\[\left( \frac{- 7 + \sqrt{61}}{2};\ \frac{7 + \sqrt{61}}{2} \right).\]