\[\left\{ \begin{matrix} 4x - y = 9\ \ \ \ \\ 3x^{2} + y = 11 \\ \end{matrix} \right.\ ( + )\]
\[\left\{ \begin{matrix} 4x + 3x^{2} = 20 \\ y = 4x - 9\ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[3x^{2} + 4x - 20 = 0\]
\[D = 4 + 60 = 64\]
\[x_{1} = \frac{- 2 + 8}{3} = \frac{6}{3} = 2;\]
\[y_{1} = 4 \cdot 2 - 9 = - 5;\]
\[x_{2} = \frac{- 2 - 8}{3} = - \frac{10}{3};\]
\[y_{2} = 4x - 9 = 4 \cdot \left( - \frac{10}{3} \right) - 9 =\]
\[= - \frac{40}{3} - 9 = - \frac{67}{3}\]
\[\left\{ \begin{matrix} x = 2\ \ \ \\ y = - 5 \\ \end{matrix} \right.\ \ \ \ \ и\ \ \ \ \left\{ \begin{matrix} x = - \frac{10}{3}\ \\ y = - \frac{67}{3}\ \\ \end{matrix} \right.\ \]
\[Ответ:(2;\ - 5);\left( - \frac{10}{3}; - \frac{67}{3} \right).\]