\[\frac{x^{4} - 17x^{2} + 16}{5x + 20} \leq 0\]
\[x^{4} - 17x^{2} + 16 =\]
\[= (x + 4)(x + 1)(x - 1)(x - 4)\]
\[Пусть\ x^{2} = t \geq 0:\]
\[t^{2} - 17t + 16 = 0\]
\[t_{1} + t_{2} = 17;\ \ t_{1} \cdot t_{2} = 16\]
\[t_{1} = 1;\ \ t_{2} = 16.\]
\[1)\ x^{2} = 1\]
\[x = \pm 1.\]
\[2)\ x^{2} = 16\]
\[x = \pm 4.\ \]
\[x < - 4;\ - 4 < x \leq - 1;\ \ \]
\[1 \leq x \leq 4.\]