\[\frac{8x}{x + 5} - 3\sqrt{\frac{8x}{x + 5}} - 4 \geq 0;\ \ \ \]
\[\ t = \sqrt{\frac{8x}{x + 5}}\ \]
\[t^{2} - 3t - 4 \geq 0\]
\[(t - 4)(t + 1) \geq 0\]
\[t \leq 1;\ \ \ \ \ t \geq 4.\]
\[1)\ \sqrt{\frac{8x}{x + 5}} \leq - 1\]
\[\sqrt{\frac{8x}{x + 5}} \geq 0 \Longrightarrow нет\ решения.\]
\[2)\sqrt{\frac{8x}{x + 5}} \geq 4\]
\[\frac{8x}{x + 5} \geq 16\]
\[\frac{8x - 16 \cdot (x + 5)}{x + 5} \geq 0\]
\[\frac{8x - 16x - 80}{x + 5} \geq 0\]
\[\frac{- 8x - 80}{x + 5} \geq 0\]
\[\frac{- 8 \cdot (x + 10)}{x + 5} \geq 0\]
\[\frac{x + 10}{x + 5} \leq 0\ \]
\[Ответ:\lbrack - 10; - 5).\]