\[\sqrt{x - 2} = 2x - 7\]
\[t = \sqrt{x - 2}\]
\[- 2t^{2} + t + 3 = 0\]
\[2t^{2} - t - 3 = 0\]
\[t_{1} = - 1;\ \ t_{2} = 1,5\]
\[1)\ \sqrt{x - 2} = - 1\]
\[\sqrt{x - 2} \geq 0 \Longrightarrow нет\ решения.\ \]
\[2)\ \sqrt{x - 2} = 1,5\]
\[x - 2 = 2,25\]
\[x = 4,25.\]
\[Ответ:\ 4,25.\]