\[\left( 11 - 2\sqrt{24} \right)x > \sqrt{8} - \sqrt{3}\]
\[\left( \sqrt{8} - \sqrt{3} \right)^{2}x > \sqrt{8} - \sqrt{3}\]
\[\left( \sqrt{8} - \sqrt{3} \right)x > 1\]
\[x > \frac{1}{\sqrt{8} - \sqrt{3}}\]
\[\frac{1}{\sqrt{8} - \sqrt{3}} =\]
\[= \frac{\sqrt{8} + \sqrt{3}}{\left( \sqrt{8} - \sqrt{3} \right)\left( \sqrt{8} + \sqrt{3} \right)} =\]
\[= \frac{\sqrt{8} + \sqrt{3}}{8 - 3} = \frac{\sqrt{8} + \sqrt{3}}{5}\]
\[x > \frac{\sqrt{8} + \sqrt{3}}{5}\]
\[Ответ:\ \ \left( \frac{\sqrt{8} + \sqrt{3}}{5}; + \infty \right).\]