\[\left( - \sqrt{x} - x \right)\left( x - 6\sqrt{x} + 8 \right) \geq 0\ \ \ \ \ \ \ \ \ \]
\[Пусть\ \ t = \sqrt{x};\ \ t \geq 0:\]
\[\left( - t - t^{2} \right)\left( t^{2} - 6t + 8 \right) \geq 0\]
\[t^{2} - 6t + 8 = 0\]
\[t_{1} = 4;\ \ \ t_{2} = 2\]
\[- t(t + 1)(t - 4)(t - 2) \geq 0\]
\[t(t + 1)(t - 4)(t - 2) \leq 0\]
\[- 1 \leq t \leq 0 \Longrightarrow t = 0\]
\[2 \leq t \leq 4\]
\[\sqrt{x} = 0 \Longrightarrow x = 0\]
\[2 \leq \sqrt{x} \leq 4 \Longrightarrow 4 \leq x \leq 16.\]
\[Ответ:\left\{ 0 \right\} \cup \lbrack 4;16\rbrack.\]